Harvard University, Cambridge, Massachusetts

2004 EPA STAR Graduate Fellowship Conference

Next Generation Scientists—Next Opportunities

Environmental Issue

Lake Mishawum is contaminated with toxic Volatile Organic Compounds (VOCs)

- Artificial, shallow lake is stratified year round
- •Methane-rich anoxic bottom layer, oxic upper layer
- •Groundwater inputs contaminated with toxic VOCs
 •benzene, toluene and phenol

Studies of Lake Mishawum suggest the major sink for benzene is bioremediation by bacteria¹

- •80% of the benzene entering the lake is degraded
- •Rates of degradation highest at oxic/anoxic interface
 - •High methane, limited oxygen
- Degradation stopped with bacterial enzyme inhibitors
 Picolinic Acid

Methane-oxidizing bacteria (methanotrophs) may be the key bacterial population in bioremediation

- •Methanotrophs are known to oxidize benzene
 - •benzene→phenol→catechol (readily degraded)
 - •Unique enzyme methane monooxygenase.2
- •Methane and oxygen present at interface

Co-Authors and Collaborators: Colleen Cavanaugh¹, Philip Gschwend², Lukas Wick², Kristopher McNeill² & Kai Uderl² (¹Harvard University ² Massachusetts Institute of Technology) Citations: Wick, L. Y. & P. M. Gschwend. 1998. Environ. Sci. Technol. 32:1319-28. 2. Hanson, R.S. &T.E. Hanson. 1996. Microbiol. Rev. 60:439-71. 3. McNeill, K., Wick, L.Y., Rojo, M., Kane, E.S., & P.M. Gschwend. Manuscript In prep. 4. Wick, L.Y., McNeill, K., Rojo, M., Medilanski, E., & P.M. Gschwend. 2000. Environ. Sci. Technol. 34:4354-62.

Scientific Approach

Hypothesis:

Methane-oxidizing bacteria are facilitating the high rates of benzene disappearance observed at the oxic/anoxic interface of Lake Mishawum.

Research Questions:

What is the diversity and abundance of methanotrophs at the oxic/anoxic interface in Lake Mishawum?

- •Molecular techniques including PCR and QPCR
- Amplify, identify, and quantify methanotroph genes
- Culturing of methanotrophic isolates

Do methanotrophs play a key role in the observed disappearance of benzene at the oxic/anoxic interface?

- •Biodegradation rates of benzene at oxic/anoxic interface
- •Inhibitors of methanotroph activity vs. other bacteria

Field Site

Depth Profiles of Dissolved Oxygen, Methane and Benzene in Lake Mishawun

Results

Issue Impact

Bioremediation of VOCs in unique environments

- •Comparisons of bioremediation in oxic and anoxic environments
- •Bioremediation at an interface
- Bacterial communities and processes involved

Engineered solution to groundwater contamination

- Stratified lake shows high rates of VOC degradation
- •Engineered solution to groundwater VOC contamination.